www.chms.ru - вывоз мусора в Люберцах


Почему витражи поражают или древнее искусство в интерьере


Панно в интерьере - модно, роскошно и практично


Наливные полы с 3D-эффектом - современное чудо дизайна


Что такое морской стиль и как его применить для оформления дома?


Почему эклектика в интерьере так популярна?

Перейти на главную  Журналы 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [ 21 ] 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

П1убина гидратации клинкерных материалов, мкм

Таблица 2.9

Минерал

Гидратация в течение

Зсут

7 сут

28суг

Змее

бмес

14,5

15,0

10,7

10,4

11,2

13,8

14,5

C4AF

12,2

13,2

В 6 мес. не превышает для наиболее активного минерала C3S 15 мкм, а наименее активного C2S - 2,7 мкм.

Многочисленными исследованиями показано, что кроме «естественных» наполнителей, которыми служат ядра большей части клинкерных частиц, в цементы и бетонные смеси могут быть с успехом введены «искусственные» наполнители - тонкомолотые, практически не растворимые в воде неорганические вещества, состоящие из частиц размером менее 150 мкм.

Обладая высокой удельной поверхностью, наполнители, наряду с прямым химическим воздействием, влияют на физико-химические процессы у поверхности раздела фаз. В соответствии с учением Гибб-са-Фольмера энергия образования зародышей кристаллов значительно уменьшается при наличии центров кристаллизации, которыми могут служить частицы наполнителя.

Уменьшая радиус зерен наполнителя и поверхностное натяжение на границе «кристалл - жидкая фаза», можно значительно повысить вероятность зарождения новой фазы. При оптимальной концентрации и дисперсности наполнителя образуется мелкозернистая структура связующего, что благоприятно отражается на технических свойствах искусственного камня. При введении наполнителя в систему «цемент - вода» скорость твердения и прочность возрастают до тех пор, пока все зерна наполнителя остаются окруженными продуктами гидратации. Для кремнеземистых частиц степень наполнения можно определить по количеству СаО, которое может связать 1 г наполнителя. Степень наполнения, рассчитанная таким образом, колеблется от 5 до 10% массы цемента.

При избытке наполнителя с высокой дисперсностью зерен возникают участки самонапряжения, что по мере роста кристаллов может привести к образованию трещин и другим нарушениям однородности микроструктуры.

Наполнитель должен обеспечить максимальную адгезионную прочность между связующими и заполнителем и когезионную проч-



ность связующего, минимальную пустотность за счет вытеснения цементного теста в контактную зону и общую пустотность бетона в целом. При этом степень наполнения должна быть такой, чтобы на начальной стадии формирования структуры были обеспечены заданные реологические параметры смеси.

Легкие шлаковые заполнители. Гранулированный шлак применяют в бетонах как мелкий заполнитель. По зерновому составу он соответствует крупному песку. Примерно 50% его массы составляют зерна крупностью более 2,5 мм. Насыпная плотность гранулированного шлака зависит от свойств шлакового расплава и технологии грануляции и составляет 600-1200 кг/м1 Гранулы, образующиеся при быстром охлаждении шлакового расплава водой или паровоздушной смесью, характеризуются высоким содержанием стекловидной фазы и пористостью.

Гранулированный шлак является эффективным заполнителем обычных и мелкозернистых бетонов, может служить укрупняющей добавкой для обогащения природных мелких песков. Пористые разновидности гранулированного шлака применяют как заполнители легких бетонов.

Шлаковая пемза - один из наиболее эффективных видов искусственных пористых заполнителей. Ее получают поризацией шлаковых расплавов в результате их быстрого охлаждения водой, воздухом, паром, а также воздействием минеральных газообразователей. Возможны следующие механизмы поризации расплава: вспучивание подъемом газовых пузырьков в расплавленной массе; вспучивание путем смешивания расплава с поризующими газами.

Особенности структуры шлаковой пемзы зависят от свойств и состава поризуемого расплава, а также от природы газов и их количества. Исходные расплавы могут иметь разнообразный химический состав, однако должны быть устойчивы ко всем видам распада. Температура расплава, поступающего на поризацию, не менее 1250 °С, вязкость при этом не должна превышать 5 Пас.

Поризация расплава происходит при перенасыщении его газами, которое наступает вследствие понижения их растворимости и кристаллизации расплава.

Освоено производство шлаковой пемзы следующими способами: брызгально-траншейным, бассейновым, вододутьевым и гидроэкранным.

Наиболее простым и высокопроизводительным является брызгаль-но-траншейный способ. Однако его недостатками являются неравномерная пористость получаемого материала, неоднородность, а также необходимость вьщеления больших площадей под траншеи.

Вододутьевой (струйный) способ заключается в дроблении шлака и перемешивании его с водой в аппаратах специальной конструкции с помощью сжатого воздуха или пара.



При использовании бассейнового способа шлаковый расплав выливается в стационарный или опрокидной металлический бассейн, в который через перфорированное днище под давлением 0,4-0,6 МПа подается вода. Под воздействием образуемого пара и вьщеляемых газов происходит вспучивание расплава. Образуемые глыбы пористого материала дробятся и рассеиваются на фракции. Стационарные и опрокидные установки различны по способу выгрузки: в первых она выполняется с помощью экскаваторов или скреперов, а во вторых - опрокидыванием бассейна.

Наиболее эффективным в настоящее время является гидроэкранный способ (рис. 2.9), основанный на резком охлаждении шлакового расплава в системе последовательно установленных гидрожелобов, состоящих из желобов и гидромониторных насадок 3, 5, через которые подается вода. Между гидрожелобами установлен экран.


Рис. 2.9. Схема гидроэкранного устройства: / - воронка; 2 - первый желоб; 3 - первая гидромониторная насадка; 4 - экран; 5- вторая гидромониторная насадка; 6 - второй желоб; 7- перегружатель

Вспучивающийся шлаковый расплав с желоба 2 струями воды выбрасывается на экран 4, отразившись от которого, попадает на желоб 6, откуда водой выносится на конвейерный перегружатель 7 для последующего охлаждения и дробления.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [ 21 ] 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121