![]() | |
![]() ![]() |
Перейти на главную Журналы рают породы с меньшей степенью метаморфизации, дающие при помоле и затворении водой пластичное тесто с числом пластичности более 10, содержание оксида алюминия должно составлять в принятом к использованию сырье не менее 20-25%. Искусственную смесь выбирают такого состава, чтобы суммарное содержание AI2O3 было не менее 15%. Помол углесодержащих отходов в этом случае ведут до получения более мелкой фракции (< 1 мм). Большое количество горючих веществ содержат отходы флотации. В отходах обогащения жирных длиннопламенных газовых углей присутствует много летучих веществ, поэтому при их применении необходимо учитывать возможность выделения значительного количества газов, что может привести к разрыхлению изделий. Меньшую калорийность имеют отходы добычи угля, а также углеобогащения крупных фракций (40-100 мм). Эффективными добавками в керамическую массу могут служить отходы флотации, не нуждающиеся в измельчении. Однако они поставляются потребителям влажностью более 25%, превышающей формовочную влажность шихты. Влажные отходы флотационного обогащения комку-ются, что затрудняет введение их в шихту и гомогенизацию смеси. Шламы углеобогащения сравнительно высокой теплотворной способности (18 900-21 ООО кДж/кг) применяют в качестве технологического топлива. Они не требуют дополнительного дробления, хорошо распределяются по садке и засыпаются через топливные отверстия, что способствует равномерному обжигу изделий. Углесодержащие породы применяют не только как топливосодер-жащую добавку, но и как основной компонент керамической шихты. Установлена возможность производства пустотелого кирпича и керамических камней на основе отходов углеобогащения как пластическим, так и полусухим формованием. Из всех видов отходов угольной промышленности отходы углеобогащения наиболее стабильны по составу. Они содержат больше глинозема, чем большинство других рядовых глин. Глинистое вещество в них представлено высокоглиноземистыми минералами - каолинитом и гидрослюдами. Содержание углерода в этих породах в несколько раз превышает требуемое для обжига стеновой керамики. После тонкого измельчения отходы углеобогащения по своим свойствам идентичны глинам, малочувствительным к сушке. Технологическая схема производства стеновых изделий из отходов углеобогащения методом пластического формования предусматривает следующие этапы: помол исходной породы в мельнице сухого измельчения; формование сырца на ленточном вакуумном прессе; сушку его в щелевой однорядной сушилке или сушилке с реверсивным движением теплоносителя; обжиг в туннельной печи по режиму, обеспечивающему изотермическую выдержку и окислительную среду при максимальной скорости выгорания коксового остатка. Жесткое прессование при давлении 2,2-4,5 МПа имеет ряд преимуществ по сравнению с пластичным, так как прочность получаемого сырца позволяет укладывать его сразу на обжиговую вагонетку в несколько рядов, исключает ряд технологических операций, а следовательно, уменьшает количество машин и агрегатов в технологической линии, повышая надежность работы и коэффициент ее полезного действия. Необходимая формуемость при жестком прессовании достигается благодаря высокому давлению, при котором сокращается потребность в воде для затворения, и повышенной температуре бруса (до 60 °С), способствующей быстрому высушиванию отформованного сырца. При этом усадка и чувствительность к сушке вследствие пониженной влажности отформованного сырца и повышенной степени уплотнения оказываются ниже, чем у сырца, полученного при пластичном способе прессования. При жестком прессовании для достижения необходимых прочности и окраски изделий требуется пониженная на 50-80 °С температура обжига. При производстве керамических стеновых изделий замена глинистых пород, добываемых в карьерах, переработанными отходами углеобогащения приводит к снижению расхода технологического топлива примерно на 80% и себестоимости изделий на 19-28%. Углесодержащие породы являются эффективным сырьем для производства пористых заполнителей. Однако значительные колебания по содержанию топлива (5-25%) и его дисперсное распределение в породе, низкая пластичность и связующая способность, неоднородность химического и минерального составов затрудняют переработку этого вида сырья по существующим технологическим схемам для природных глин без дополнительной корректировки. Анализ технологических методов производства искусственных пористых заполнителей из топливосодержащих отходов добычи и обогащения углей свидетельствует о том, что наиболее эффективным является метод агломерации. Помимо простоты технологии он дает возможность эффективно использовать содержащееся в отходах топливо. Сущность процесса агломерации заключается в том, что топливо в спекаемой шихте горит в тонком горизонтальном слое, в результате чего воздух, поступающий в зону горения, нагревается и интенсифицирует процесс горения топлива шихты, а горячие газы, выходящие из зоны горения, подсушивают и нагревают следующий слой шихты. После выгорания топлива зона горения перемещается в лежащий ниже слой шихты. При получении из порошкообразного и мелкозернистого сырья методом агломерации (рис. 3.9) пористого и прочного конгломерата исходное сырье смешивают с измельченным топливом, увлажняют и окомковывают (гранулируют). Затем шихту, состоящую из отдельных зерен (гранул), непрерывно подают на верхнюю рабочую ветвь ленточной конвейерной агломерационной машины. На первом участке ![]() Рис. 3.9. Схема производства аглопорита из отходов обогащения горючих сланцев: / - пластинчатый питатель; 2- неподвижная решетка; 3 - щековая дробилка; 4- валковая дробилка; 5- молотковая дробилка; б, 15- виброгрохоты; 7- реверсивный ленточный конвейер с ножами; 8- бункеры для хранения запаса шихты; 9- ленточные питатели; 10- шихтосмеситель; 11 - гранулятор; 12 - агломерационная машина; 13 - роторная дробилка; 14 - зубчатая дробилка непрерывно движущейся ленты в верхнем слое шихты зажигают топливо, после чего зона горения продвигается в толщу шихты за счет просасывания через нее воздуха. В конце рабочей ветви машины получают готовый обожженный продукт. Отходы углеобогащения как сырье считаются пригодными для производства аглопорита, если в результате испытаний в лабораторных условиях будут достигнуты следующие показатели процесса спекания и качества готового продукта. Вертикальная скорость спекания, мм/мин............................Не менее 5 Удельная производительность агломерационной машины, мУмч....................................................................Не менее 0,23 Насыпная плотность аглопоритового щебня крупностью 10-20 мм, кг/м ..............................................Не более 800 Насыпная плотность аглопоритового песка крупностью 0-5 мм, кг/м .................................................Не более 1200 Прочность аглопоритового щебня при сдавливании в цилиндре, МПа...................................................................Не менее 0,4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 [ 58 ] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |